

1 Mb (64K x 16) Static RAM

Features

Very high speed: 55 nsVoltage range: 1.65V to 2.2V

Ultra-low active power

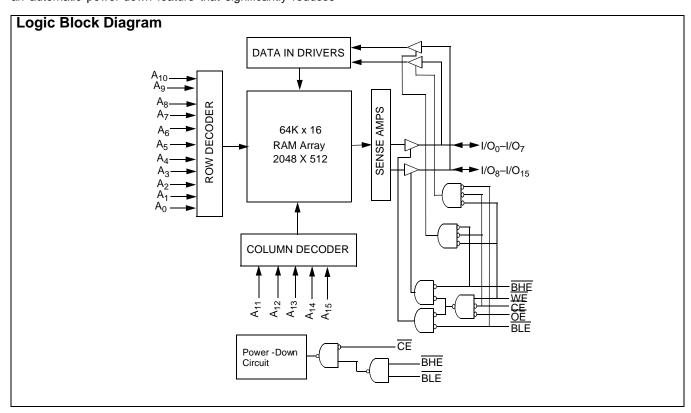
Typical active current: 0.5 mA @ f = 1 MHz
 Typical active current: 3.75 mA @ f = f_{MAX}

• Ultra-low standby power

Easy memory expansion with CE</> and OE</> features

· Automatic power-down when deselected

 Packages offered in a 48-ball FBGA and a 44-lead TSOP Type II

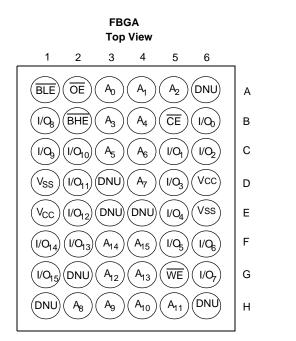

Functional Description[1]

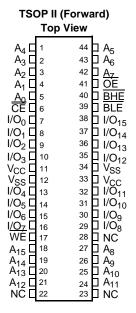
The CY62127DV18 is a high-performance CMOS static RAM organized as 64K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL®) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces

power consumption by 99% when addresses are not toggling. The device can be put into standby mode reducing power consumption by more than 99% when deselected Chip Enable (CE) HIGH or both BHE and BLE are HIGH. The input/output pins (I/O $_0$ through I/O $_{15}$) are placed in a high-impedance state when: deselected Chip Enable (CE) HIGH, outputs are disabled (OE HIGH), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH) or during a write operation (Chip Enable (CE) LOW and Write Enable (WE) LOW).

Writing to the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) LOW and Write Enable ($\overline{\text{WE}}$) input LOW. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from I/O pins ($\overline{\text{I/O}}_0$ through I/Os pins ($\overline{\text{A}}_0$ through A₁₅). If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from I/O pins ($\overline{\text{I/O}}_8$ through I/O₁₅) is written into the location specified on the ad

Reading from the device is accomplished by taking Chip Enable (CE) LOW and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then O_7 . If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the truth table at the back of this data sheet for a complete description of re




Note:

1. For best-practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Pin Configuration^[2]

Note:

2. E3 (DNU) can be left as NC or Vss to ensure proper operation. or left open(Expansion Pins E4 - 2M, D3 - 4M, H1 - 8M, G2 - 16M, H6 - 32M)., NC Pins are not connected to the die.

MoBL

Maximum Ratings

(Above which the useful life may be impaired. For user guide-lines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied-55°C to +125°C

Supply Voltage to Ground Potential .-0.2V to V_{CCMAX} + 0.2V

DC Voltage Applied to Outputs

in High-Z State^[3].....-0.2V to V_{CC} + 0.2V

DC Input Voltage ^[3]	$-0.2V$ to V_{CC} + $0.2V$
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

Range	Ambient Temperature (T _A)	V _{cc}
Industrial	-40°C to +85°C	1.65V to 2.2V

Product Portfolio

					Power Dissipatio					
					Operating, Icc (mA)					
	V _{CC} Range(V)		Speed	f = 1	MHz	f = f	MAX	Standby,	I _{SB2} (μA)	
Product	Min.	Тур.	Max.	(ns)	Typ. ^[4]	Max.	Typ. ^[4]	Max.	Typ. ^[4]	Max.
CY62127DV18L	1.65	1.8	2.2	55	0.5	1.5	3.75	7.5	0.5	5
CY62127DV18LL				55	0.5	1.5	3.75	7.5	0.5	4

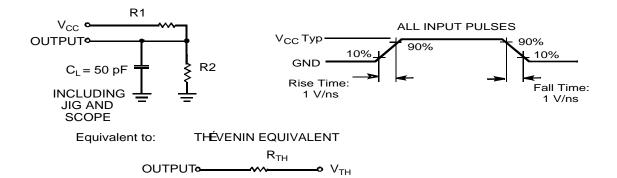
DC Electrical Characteristics Over the Operating Range

		Test Conditions			CY	62127DV1	8-55	
Parameter	Description				Min.	Typ. ^[4]	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -0.1 \text{ mA}$			1.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA					0.2	V
V _{IH}	Input HIGH Voltage				1.4		$V_{CC} + 0.2$	V
V _{IL}	Input LOW Voltage				-0.2		0.4	V
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$			-1		+1	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}, O$	utput Disabled	i	-1		+1	μΑ
I _{CC}	V _{CC} Operating Supply Cur-	$f = f_{MAX} = 1/t_{RC}$	$Vcc = 2.2V, I_{C}$			3.75	7.5	mA
	rent	f = 1 MHz	0mA, CMOS	level		0.5	1.5	
I _{SB1}	Automatic CE Power-down	$CE \ge V_{CC} - 0.2V$,		L		0.5	5	μΑ
	Current – CMOS Inputs	$V_{IN} \ge V_{CC} - 0.2V$, $V_{IN} \le 0.2V$, $f = f_{MAX}$ (Address and Data Only), $f = 0$ (OE, WE, BHE and BLE)			0.5	4		
I _{SB2}	Automatic CE Power-down	$CE \ge V_{CC} - 0.2V$,			0.5	5	μΑ	
	Current – CMOS Inputs	$V_{IN} \ge V_{CC} - 0.2V$ or $f = 0, V_{CC} = 2.2V$	$V_{IN} \leq 0.2V$,	LL		0.5	4	

Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	TA = 25°C, f = 1 MHz	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

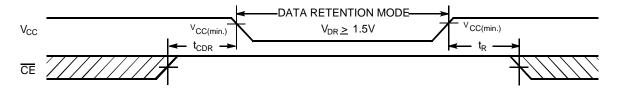
Thermal Resistance


Parameter	Description	Test Conditions	FBGA	TSOP II	Unit
	Thermal Resistance (Junction to Ambient) ^[5]		55	76	°C/W
θ_{JC}	Thermal Resistance (Junction to Case) ^[5]	two-layer printed circuit board	12	11	°C/W

Notes:

- 3. $V_{IL(min.)} = -1.0V$ for pulse durations less than 20 ns., $V_{IH(max.)} = Vcc+0.5V$ for pulse durations less than 20 ns.
- Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25°C.
- 5. Tested initially and after any design or proces changes that may affect these parameters.

AC Test Loads and Waveforms



Parameters	1.8V	UNIT
R1	13500	Ω
R2	10800	Ω
R _{TH}	6000	Ω
V _{TH}	0.80	V

Data Retention Characteristics

Parameter	Description	Conditions	Min.	Typ. ^[4]	Max.	Unit	
V_{DR}	V _{CC} for Data Retention			1		2.2	V
I _{CCDR}	Data Retention Current	V_{CC} =1.5V, $\overline{CE} \ge V_{CC} - 0.2V$, $V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$	L			4	μΑ
		$V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$	LL			3	
t _{CDR} ^[5]	Chip Deselect to Data Retention Time			0			ns
t _R ^[6]	Operation Recovery Time			100			μS

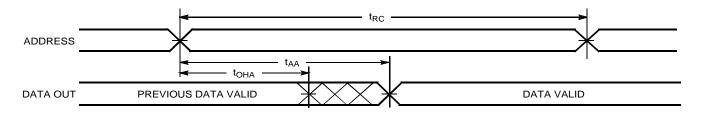
Data Retention Waveform^[7]

Notes:</>

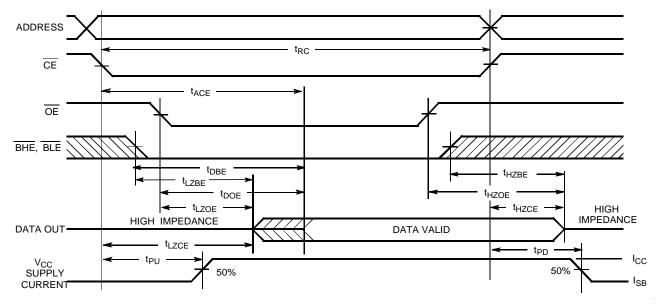
- 6. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)}$ >100 μ s.
- 7. $\overline{BHE'BLE}$ is the AND of both \overline{BHE} and \overline{BLE} . Chip can be deselected by either disabling the Chip Enable signals or by disabling both

Switching Characteristics (Over the Operating Range)^[8]

		CY6212	7DV18-55	
Parameter	Description	Min.	Max.	Unit
Read Cycle		<u>.</u>		
t _{RC}	Read Cycle Time	55		ns
t _{AA}	Address to Data Valid		55	ns
t _{OHA}	Data Hold from Address Change	10		ns
t _{ACE}	CE LOW to Data Valid		55	ns
t _{DOE}	OE LOW to Data Valid		25	ns
t _{LZOE}	OE LOW to Low Z ^[9]	5		ns
t _{HZOE}	OE HIGH to High Z ^[9,11]		20	ns
LZCE	CE LOW to Low Z ^[9]	10		ns
t _{HZCE}	CE HIGH to High Z ^[9,11]		20	ns
t _{PU}	CE LOW to Power-up	0		ns
t _{PD}	CE HIGH to Power-down		55	ns
t _{DBE}	BLE/BHE LOW to Data Valid	55		ns
t _{LZBE} ^[10]	BLE/BHE LOW to Low Z ^[9]	5		ns
t _{HZBE}	BLE/BHE HIGH to High-Z ^[9,11]		20	ns
Write Cycle ^[12]		I	•	l
t_{WC}	Write Cycle Time	55		ns
t _{SCE}	CE LOW to Write End	40		ns
t _{AW}	Address Set-up to Write End	40		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-up to Write Start	0		ns
t _{PWE}	WE Pulse Width	40		ns
t _{BW}	BLE/BHE LOW to Write End	40		ns
t _{SD}				ns
t_{HD}	Data Hold from Write End	0		ns
t _{HZWE}	WE LOW to High Z ^[9,11]		20	ns
t _{LZWE}	WE HIGH to Low Z ^[9]	10		ns

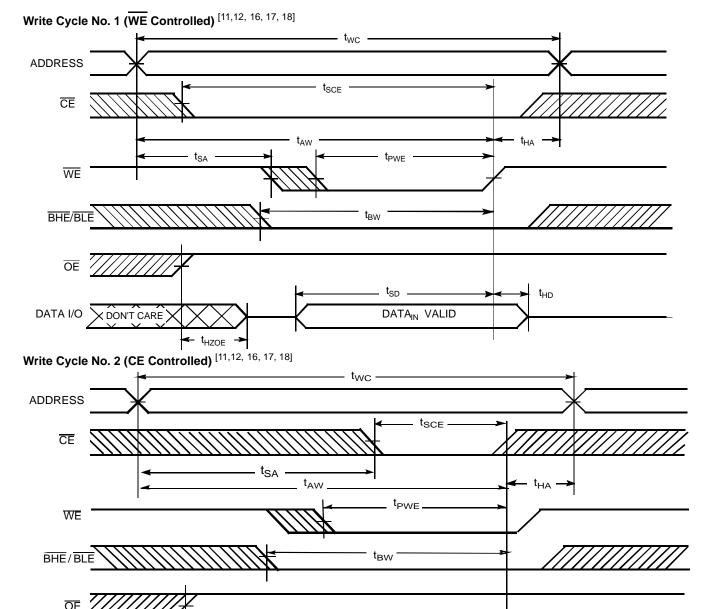

Notes:

- Test conditions assume signal transition time of 1V/ns or less, timing reference levels of VCC(typ.)/2, input pulse levels of 0 to VCC(typ.), and output loading of the specified IOL/IOH and 50 pF load capacitance.
 At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZCE}, t_{HZBE}, t_{HZOE} is less than t
 If both byte enables are toggled together, this value is 10 ns.
 t_{HZOE}, t_{HZCE}, t_{HZBE}, and t_{HZWE} transitions are measured when the outputs enter a high-impedance state.
 The internal Write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE and/or BLE = V_{IL}. All signal



Switching Waveforms

Read Cycle No. 1 (Address Transition Controlled) $^{[13,14]}$

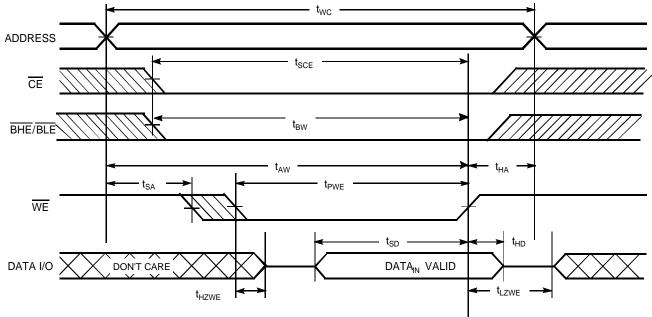

Read Cycle No. 2 (OE Controlled)[14,15]

Notes:

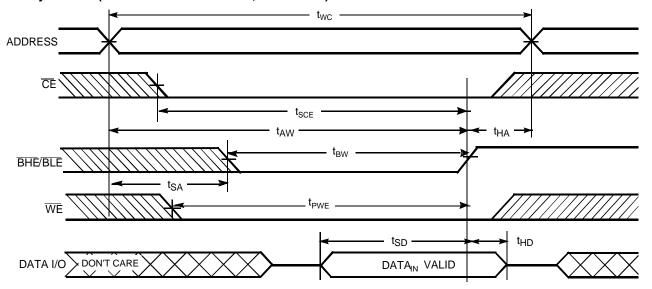
- Device is continuously selected. OE, CE = V_{IL}, BHE, BLE = V_{IL}.
 WE is HIGH for Read cycle.
 Address valid prior to or coincident with CE, BHE, BLE transition LOW.

Notes:

DON'T CARE

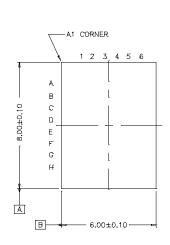

16. Data I/O is high-impedance if OE = V_{IH}.
17. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
18. During the DON'T CARE period in the DATA I/O waveform, the I/Os are in output state and input signals should not be applied.

 t_{HD}

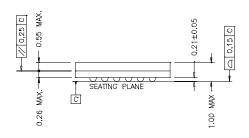

DATA_{IN} VALID

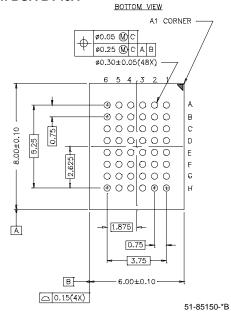
Write Cycle No. 4 (BHE</>/BLE</> Controlled, OE</> LOW)</>

Truth Table

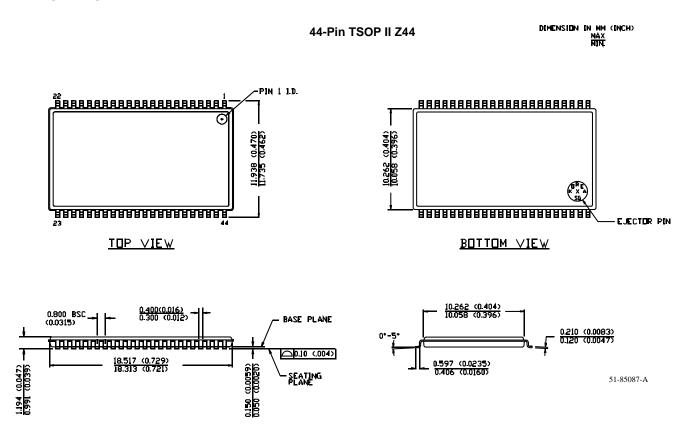

Χ	Χ	Χ	Н	Н	High Z	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	L	L	Data Out	Data Out	Read All bits	Active (I _{CC})
L	Н	L	Н	L	Data Out	High Z	Read Lower Byte Only	Active (I _{CC})
L	Н	L	L	Н	High Z	Data Out	Read Upper Byte Only	Active (I _{CC})
L	Н	Н	L	L	High Z	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High Z	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High Z	High Z	Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In	Data In	Write	Active (I _{CC})
L	L	Х	Η	L	Data In	High Z	Write Lower Byte Only	Active (I _{CC})
L	L	Χ	L	Н	High Z	Data In	Write Upper Byte Only	Active (I _{CC})

Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CY62127DV18L-55BVI	BV48A	48-ball Fine Pitch BGA (6mm x 8mm x 1mm)	Industrial
	CY62127DV18LL-55BVI	BV48A	48-ball Fine Pitch BGA (6mm x 8mm x 1mm)]
	CY62127DV18L-55ZI	Z44	44-Lead TSOP Type II]
	CY62127DV18LL-55ZI	Z44	44-Lead TSOP Type II	1


Package Diagrams

48-Ball (6 mm x 8 mm x 1 mm) Fine Pitch BGA BV48A


TOP VIEW

Package Diagrams (continued)

MoBL is a registered trademark, and MoBL2 and More Battery Life are trademarks, of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

	Document Title: CY62127DV18 MoBL2 [®] 1 Mb (64K x 16) Static RAM Document Number: 38-05226							
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change				
**	118006	10/01/02	CDY	New Data Sheet				
*A	127312	06/17/03	MPR	Changed status from Advance Information to Preliminary Changed Isb2 to 5 uA(L), 4 uA(LL) Changed Iccdr to 4 uA(L), 3 uA(LL) Changed Cin from 6 pF to 8 pF				